Indian Statistical Institute, Bangalore

B. Math (Hons.) Third Year

Second Semester - Analysis IV

Semestral Exam Maximum marks: 50 Date: 11th May 2022 Duration: 3 hours

Answer any five, each question carries 10 marks

- 1. (i) Prove that C(X) is separable for a compact metric space X (Marks: 5).
 - (ii) Prove that C[0,1] has no open set whose closure is compact.
- 2. (i) Let X be a compact metric space. For r > 0, let $E_r = \{f \in C(X) \mid |f(x) f(y)| \le rd(x, y) \text{ for all } x, y \in X\}$. Let $A \subseteq E_r$. Prove that \overline{A} is compact if and only if $\{f(z) \mid f \in A\}$ is bounded for some $z \in X$.

(ii) If X is a compact metric space and \mathcal{A} is a closed subalgebra of $C_{\mathbb{R}}(X)$ that separates points of X, prove that either \mathcal{A} nowhere vanishes or there is a $x_0 \in X$ such that $\mathcal{A} = \{f \in C_{\mathbb{R}}(X) \mid f(x_0) = 0\}$ (Marks: 5).

3. (i) Let *E* be an open subset of \mathbb{R}^n and $f: E \to \mathbb{R}^n$ be a C^1 -function. Prove that $f(\{x \in E \mid f'(x) \text{ is invertible }\})$ is open in \mathbb{R}^n .

(ii) State and prove contraction mapping principle (Marks: 5).

- 4. (i)Find ∑_{k=1}[∞] sin(2k-1)x</sup>/(2k-1)x for any x ∈ (-π, 0) using Fourier Series (Marks: 5).
 (ii) Describe a method of finding total variation of a differentiable function f: [0, 1] → ℝ such that f' is 0 at only one point.
- 5. (i) Prove that Fourier series of any 2π-periodic bounded function that is monotonic in [-π, π) converges (Marks: 5).
 (ii) Determine the Fourier coefficient of f defined by f(x) = |x| for |x| ≤ 2 and f(x + 4) = f(x) for all x ∈ ℝ.
- 6. (i) Let f and g be of bounded variation on [a, b]. Prove that rf + sg and fg are also functions of bounded variation on [a, b] for any constants r and s.
 - (ii) State and prove Riemann-Lebesgue Lemma (Marks: 5).
- 7. (i) Let $f \sim \sum c_n e^{inx}$. Suppose $\sum n^2 |c_n|^2 < \infty$. Prove that $\sum c_n e^{inx}$ converges. Further if f is continuous at some point x, prove that $f(x) = \sum c_n e^{inx}$. (ii) Let f be a 2π -periodic continuously differentiable function and $\int_{-\pi}^{\pi} f = 0$. Prove that $\int_{-\pi}^{\pi} |f'|^2 \geq \int_{-\pi}^{\pi} |f|^2$ and the equality occurs if and only if $f(x) = a\cos x + b\sin x$ for some constants a and b (Marks: 5).